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A layer of fluid containing gradients of both temperature and salinity is subject to  
several instabilities of geophysical interest. When the salinity and temperature 
increase upwards, the layer may become unstable even if the density profile 
indicates stability. This ‘doubly diffusive ’ instability, first treated by Stern, is 
seen experimentally to consist of thin fingers of up- and downgoing fluid. Linear 
analysis cannot explain this small horizontal scale for a steady-state process, but 
a nonlinear treatment of the problem combined with a stability analysis indicates 
that only small-scale motions are stable when the salinity gradient is larger than 
that necessary for the onset of instability. In the limit of small salt diffusivity the 
flux of salt is calculated using the Galerkin technique and found to reach a 
maximum at a wavelength that decreases with increasing salinity and tempera- 
ture gradients. The stability of the finite amplitude solutions is treated; only 
small-scale motions are found to be stable and the wavelength of the most stable 
mode is found to compare favourably with the wavelength that maximizes the 
salt flux. 

1. Introduction 
There has been considerable interest recently in a class of hydrodynamic 

instabilities that has come to be called ‘doubly diffusive ’. This type of instability, 
which may arise even when the fluid is stably stratified, depends for its driving 
mechanism on the different diffusive properties associated with two forces, one 
of which is stabilizing, one destabilizing. This is to be contrasted with singly 
diffusive instabilities, in which there is no stabilizing component (other than 
dissipation). Typical representatives of doubly diffusive instabilities are the 
salt finger instability, first treated by Stern (1960)) and an instability associated 
with differential rotation in stars, treated by Goldreich & Schubert (1967). The 
salt finger instability can arise in a horizontal layer of fluid in which gradients of 
both temperature and salinity are positive upwards. Because salt diffuses at a 
much slower rate than does heat, a parcel of fluid perturbed downwards loses its 
stabilizing temperature excess so much faster than its destabilizing salinity 
excess that it can continue downwards even if the initial density profile was a 
stable one. The doubly diffusive character of the salt finger instability is clear: 
both temperature and salinity influence the density of the fluid, and the instability 
requires that the stabilizing quantity (temperature) diffuses more rapidly than the 
destabilizing one (salinity). The instability of differentially rotating stars involves 
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an unstable angular momentum distribution (decreasing outwards) and a 
subadiabatic temperature profile, corresponding to stable stratification. Insta- 
bility can occur because, in the radiative zone of a star, momentum diffuses 
much less rapidly than heat. On being perturbed, a parcel of fluid comes into 
thermal equilibrium with its surroundings much more rapidly than its angular 
momentum can equilibrate, so that instability can result. 

In laboratory experiments the ealt finger instability is always seen to set in as 
thin cells of fluid moving alternately up and down in the stably stratifled layer. 
Stern (1960) suggests that the experimentally observed structure is due to the 
fact that the fastest-growing mode is the one which will dominate. He has shown 
that, when the salinity gradient is greatly in excess of the value necessary for the 
onset of instability, the mode which maximizes the growth rate of infinitesimal 
perturbations has a much smaller scale than that a t  marginal stability. In  the 
same way, Goldreich & Schubert found that thin cells maximize the growth rate 
of infinitesimal disturbances in a region of unstable angular momentum gradient 
in stars, and thus predict a similar structure in that situation. 

In  a steady-state process, with the value of the relevant parameters well above 
those necessary for the onset of instability, however, linear theory cannot be 
called upon to explain the horizontal scale of the motion. L+ear theory leaves 
the amplitude of the motion undetermined, predicts that unstable modes grow 
exponentially in time and provides no mechanism for the flow to reach a steady 
state. As the amplitude of the motion increases, interactions of finite amplitude 
modes with each other become important and cannot be disregarded in a treat- 
ment of the problem. Thus nonlinear effects must be included if any accurate 
analysis of the properties of the steady-state system is desired. It is such an 
analysis that will be carried out here. The two major goals of this paper are: &st, a 
clarification of the wavelength question in doubly diffusive instabilities; and 
second, an evaluation of the effectiveness of doubly diffusive instabilities in the 
transport process. In discussing these two major topics, the salt finger instability 
will be treated as representative of doubly diffusive convection in which the more 
slowly diffusing component of the fluid is destabilizing. The model to be considered 
is that of a horizontal layer of fluid containing a destabilizing salinity gradient 
and a stabilizing temperature gradient large enough so that the density of the 
fluid decreases upwards. The layer is confined between two stress-free boundaries 
through which both heat and salt are perfectly conducted. These boundary 
conditions are not really representative of laboratory experiments in which hot 
salt water is placed over cold fresh water, and salt fingering occurs a t  the interface 
(Turner 1967; Stern & Turner 1969; Shirtcliffe & Turner 1970). The problem 
presented is, however, one which brings out the salient points of doubly diffusive 
convection, and it is felt that the major results obtained here have more general 
applicability. In  addition, the fact that the problem for a free, perfectly conduct- 
ing boundary is self-adjoint allows considerable progress to  be made in the 
mathematical analysis. 

The problem of wavelength selection in cellular convective problems is central 
to the present investigation. Much research has been carried out in this area 
since Malkus (1954), motivated by his experimental findings for thermal 
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convection, suggested that, among the manifold of solutions to the Boussinesq 
equations, the solution that maximizes the heat transport a t  a given value of the 
thermal Rayleigh number will be realized. Although this heuristic criterion seems 
to have approximate validity in many physical situations, it cannot be established 
mathematically. It is the stability of a particular flow that determines whether or 
not it will be seen in nature. This problem was formally solved for small ampli- 
tude convection by Schluter, Lortz & Busse (1965). They showed that, in the 
case of a Boussinesq fluid, two-dimensional rolls constitute the only horizontal 
planform stable to infinitesimal perturbations a t  a temperature gradient slightly 
greater than its critical value. The wave band of stable rolls was shown to 
deviate only slightly from the value predicted at marginal stability. Busse 
(1967) studied numerically the stability of finite amplitude roll solutions of the 
Boussinesq equations for thermal convection between rigid perfectly conducting 
parallel plates. It was found that not all wavelengths of convective motion are 
stable, for nonlinear effects cause all but a small wave band of modes to be 
unstable. It is important to note that this result is in conflict with the concept of a 
single physically distinguished wavelength since Busse’s analysis predicts a finite 
range of stable rolls. Malkus’ idea, however, is compatible with Busse’s analysis 
in that the flow which transports the most heat at a given thermal Rayleigh 
number has a wavelength that is found to fall within the region of stable rolls. 

In  contrast to the situation in thermaI convection, in which the region of 
stable wavelengths always includes that at marginal stability, wavelengths in 
the salt finger instability are always observed to be much smaller than that at 
marginal stability. A major portion of this paper will be concerned with the 
dependence of various properties of the motion on its horizontal wavelength. 
For values of the relevant parameters near marginal stability, an expansion 
procedure that was used as a preliminary analysis is outlined. It is found that, in 
this parameter regime, the instability is quite similar to singly diffusive convec- 
tion. For values of the relevant parameters well above marginal stability, the 
Galerkin method is used in a treatment similar to that of Busse (1967). Properties 
of the steady-state salt finger process are calculated and the stability of the finite 
amplitude flows thus found is examined. The small horizontal scale is found to be 
predictable as a consequence of the stability of the finite amplitude steady motion, 
and a ‘preferred wavelength’ is determined as that wavelength which is most 
stable to infinitesimal perturbations. 

The effectiveness of salt fingers in transporting salt is described by the depen- 
dence of the salt Nusselt number on the salinity and temperature gradients. The 
salt Nusselt number is defined as the ratio of the actual rate of transport of salt to 
that which would occur if only diffusion were operative (the definition of Nusselt 
number for salt transport here is analogous to that of the usual Nusselt number 
for heat transport). The numerical results can be extrapolated to yield power 
laws describing this dependence. Since the power laws are closely approached by 
the numerical results, they should be representative over a wide range of Rayleigh 
numbers, even if the asymptotic state has not been reached in the range of 
parameters treated here. The salt flux is found to obey a power law qualitatively 
compatible with that observed in the laboratory experiments of Turner (1967). 
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2. Mathematical method 
Consider a layer of fluid between paraIlel stress-free boundaries at z = 5 Qd 

which are perfectly conducting for both heat and solute. On the boundaries the 
solute concentration (salinity) and temperature are specified: 

solute concentration: # ( i d )  = So+AS, S( - i d )  = So, 

temperature: T(Qd) = To+AT, T ( - i d )  = To. 

The basic motionless state 

T = To+AT($+Z/d), X = So+AS(fr+Z/d) 

is perturbed with disturbances in temperature, salinity, velocity and pressure : 
8 , X ,  v and p .  In  the Boussinesq approximation the governing equations for the 
perturbations are 

(1) 
aV 1 
- + V .  VV = - - V p  +gk(aB - p 2 )  + vV2v, 
at Po 

ae AT 
-+v.V8 at = KTv2e-wT, 

ax AS -+V.vc at = KSV2X-W-, d 

v.v = 0, (4) 

where g = acceleration of gravity, a is the coefficient of thermal expansion, p is 
the density change due t o  a unit change in salinity, AT and A8 are the tempera- 
ture and salinity differences across a layer of depth d, v is the kinematic viscosity, 
K~ is the thermal diffusivity, K ,  is the salt diffusivity, k is the unit vector in the 
vertical direction, v = ux + vy + wk and po is the mean density. The boundary 
conditions are 

8 = C = w = a,,w = 0 a t  z = k i d .  ( 5 )  

In  order to carry out the analysis it is convenient to non-dimensionalize the 
equations as follows (an asterisk denotes a non-dimensional quantity) : 

v = (K,/d)V*, t = (d2/K,)t*, 8 = rAT8*, 

X = ASc*,  X = d X * ,  p = (poKi/d2)p*. 

Dropping the asterisks, the non-dimensional equations are 

ip[av/at  + V .  VV]  = - V p  + (Ra8 - R E )  k + V2v,  (6) 

r[ae/at + V .  VO] = - w + V28, (7) 

a2pi-V.vX = -w+V2X, (8) 

v.v = 0. (9) 

The following non-dimensional parameters have been introduced : 

Ra = guATd3/v~,, Rs = g$A8d3/v~,, r = K , / K ~ ,  R = Rs/r, r = V/K,. 

We shall now make an approximation, consistent with the doubly diffusive 
property of the instability, which will considerably simplify the analysis. We are 
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interested in the limit characterized by the inequalities v B KT B K,, but with 
R and Ra finite. The inequalities KT B K~ and v 9 K~ are especially appropriate 
for salt water, for which K ~ / K ~  N lo2 and V/K,  N lo3. Thus, in this 'small 7 limit' 
the momentum and heat equations are linearized, and the only nonlinear equa- 
tion remaining is that for the solute: 

0 = -Vp+(RaB-RZ)k+V2v,  (10) 

w = V26, (11)  

ax /a t+v .vx  = -w+v2c, (12) 

v.v = 0. (13) 

The linear stability analysis of the salt finger instability was given by Stern 
(1960) and will not be reproduced here. It is sufficient to indicate that the insta- 
bility sets in as a monotonically growing disturbance (exchange of stabilities) 
when R exceeds its critical value R, = Ra + y7r4. Further applications of linear 
theory to the salt finger problem were carried out following the analysis of Stern. 
Walin (1964) treated the problem for an infinite fluid and found that convection 
against a stable density gradient will generally occur on a scale limited by internal 
parameters and not by the dimensions of the vessel. He noted that, as is evident 
from the condition for marginal stability, since T < 1 instability wilI occur unless 
the density is very stably stratified, i.e. for large R and Ra, instability is hindered 
only if aAT > ,!~AX/T. Nield (1967) treated the problem for general boundary 
conditions. Baines & Gill (1969) presented an exhaustive linear analysis for both 
this problem and the inverse problem: that of thermal convection in the presence 
of a, stabilizing salinity gradient. They found, as did Stern, that when Ra B Rs the 
infinitesimal mode with the largest rate of growth has a wavenumber a N Raa. 
Yih (1970) has proved that, for values of the parameters of geophysical interest, 
the principle of exchange of stabilities holds. 

For R > R, a convective motion is established in which those modes which 
grow most rapidly dominate initially. As the flow amplitude increases, interac- 
tions between the various modes occur, and nonlinear terms in the governing 
equations become important in allowing a steady-state flow to  develop. In  order 
to treat the problem for values of R and Ra just above those for marginal stability, 
an expansion in the small amplitude of the motion may be used. Since the analysis 
is very similar to that of Schluter, Lortz &, Busse (1965) it  will not be reproduced 
here in detail. Such a treatment yields several results of interest. For values of R 
slightly in excess of R, = Ra + +r4, two-dimensional rolls transport more salt 
than any other horizontal planform and constitute the only type of motion 
stable to infinitesimal perturbations. (That the solute flux is the important 
quantity to look at is reasonable since it is the solute concentration this is 
destabilizing and thus drives the motion; since K~ B K,, the temperature pertur- 
bation 8 is smaIl and the heat flux is only slightly modified by the convective 
motion.) This analysis also yields the following results for R near R,. 

(i) When R is expanded as R = R, + eR1 + e2R2 + . . . , where e is the small but 
finite amplitude of the motion, the results R, = Ra+ (a2 + 7r2),"/a2 and R, = 0 
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follow. Here a is the horizontal wavenumber of the flow. For two-dimensional roll 
solutions, R2 = Ro/4(a2 + n2). Thus, to this order for two-dimensional flow, 

(ii) No subcritical instability is to be expected, since R = Ro+a2R2 with 
R2 > 0, e2 > 0; thus, to this order, instability cannot set in at a lower value of 
R than R,. This result can be proved more generally using the energy method. 

(iii) The solute and thermal Nusselt numbers are related by 

(NUS- I)/(Nd- 1) = 1/72. 

Since these findings indicate that two-dimensional motion is to  be expected for 
small amplitude doubly diffusive convection, motion having the form of two- 
dimensional rolls will be considered here. Although this is an assumption made 
mainly for computational reasons, it  is reasonable that two-dimensional motion 
may extend throughout the range of low to moderate values of R and Ru included 
in the present work. Three-dimensional motion in the form of fingers is realized in 
laboratory experiments at values of R and Ru considerably larger than those 
treated here; at these large values of R and Ru, the laboratory experiments are 
certainly in a turbulent rather than a laminar regime, and the three-dimension- 
ality may be due to effects other than those included here. In  any case, it is felt 
that the values of the salt transport calculated here are not grossly in error 
because of the two-dimensional model, and the flow of small horizontal scale 
predicted by the present analysis is, in fact, physically realized. 

In  order to treat the steady-state salt fingering process, we shall expand the 
variablesin (lo)-( 13) in a double Fourier series (in x and z), keeping enough terms 
to ensure an accurate representation of the flow. The resulting system of coupled 
nonlinear ordinary differential equations, with time as the independent variable, 
may be integrated numerically to find the Fourier coefficients in the steady state. 
The solute flux can thus be calculated as a function of a2 for given values of'R and 
Ru. This method is particularly useful because it can be combined with a stability 
analysis (Busse 1967). The solution to the steady-state problem may be per- 
turbed with infinitesimal disturbances whose growth rates may be determined as 
eigenvalues. Any disturbance with a growing time dependence indicates that the 
steady flow is unstable; otherwise it is stable. 

In  order to develop the equations to be solved, we shall introduce new notation. 
Since the vertical component of vorticity satisfies V2(av/ax- au/ay) = 0, the 
boundary conditions allow only the solution av/ax - au/i?y = 0, if the possibility 
of rigid rotation is excluded. Since continuity, 0 . v  = 0, must also be satisfied, 

wi = di$, where 6i = (axas, a$,, - VZ,) we may write 

and 

In two dimensions, x and z, the equations become 
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V2 = (a,,+a,,) and Si = (a,a,, --az,). 
where now 

We may eliminate 0 between (15) and (16) to obtain 

(V6+Ra8,,)q5 = -RV2C.  

Equations (17) and (18) are those to be studied. 

359 

3. The finite amplitude steady solutions 

series that satisfies free perfectly conducting boundary conditions at z = f +: 
Assuming that >; and g5 are periodic in the horizontal, expand S in a Fourier 

where - 00 < h < co, 1 < 1’ < co and aAv = a?,,,, where * denotes the complex con- 
jugate. Similarly, expand q5 as 

where the same summation limits apply as for C, and b,, = b?,,,. We may solve 
for b,,(t) q$(x) using the linear equation (18). The particular solution is 

Since the particular solution satisfies the boundary conditions, the homogeneous 
problem has a vanishing solution. Thus we may substitute the Fourier series for 
C and q5 into the remaining nonlinear equation (17), multiply by 

e--ipax sin y n ( z  + i), 
and integrate over the layer to obtain the following set of coupled first-order 
ordinary differential equations for the a,,,(t) : 

As Busse (1967) has pointed out, the symmetry of the equations allows the 
analysis to  be simplified. The equations contain a closed subset in which only 
coefficients with even Ihl+ v appear. The set with odd (hl + Y leads to decaying 
solutions only, and so only the set with even I hl + Y need be treated in the following 
numerical work. It is also appropriate to examine a finite subset of the equations 
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for which / A / +  v < N ,  where N is a positive even integer. This is a commonly 
used method and is explained in some detail by Veronis (1966). 

In  this way systems of equations with N = 4,6,13,10,12,14 and 16 were inte- 
grated numerically, for a range of values of R for fixed values of Ra, using a modi- 
fied predictor-corrector method due to Hammings (Ralston & Wilf 1960) and a 
rational extrapolation method due to Bulirsch & Stoer (1966). Small initial 
values for the coefficients were used, although the asymptotic steady-state 
solution appeared to be unique, since it was reached independently of the choice of 
initial conditions. In  order to speed convergence, in many cases results from 
calculations with lower values of N were used as initial values. The time step was 
varied between 0.01 and 0.0005 to ensure accuracy, and integration was carried 
out until a steady state was reached. The criterion for convergence was taken to be 

and was usually attained before the integration reached t = 1 ; since the time was 
non-dimensionalized with respect to the solute diffusion time, the longest time 
scale in the problem, this is reasonable. The validity of the results was verified by 
examining the value of the solute Nusselt number 

NUS= 1 + m ~ ~ a , ,  
V  

as a function of N:  if Nus varied by less than 1 % as N was increased from N to 
N + 2, the representation with JhJ  + v 6 N was considered sufficiently accurate. 
Since Nus is a rapidly convergent function of N when N is large enough, the 
results for Nus are considered to have an error no larger than 1 %. 

As expected, for a given Ra, larger values of N are necessary as R increases. 
Also, for fixed R/Ra more terms are required in the representations as Ra increases 
because, for high values of Ra, higher modes become important a t  a lower ratio 
R/Ra than for lower Ra; for this reason, for large Ra, the numerical solutions may 
be obtained only up to a value of R/Ra that, is lower than that possible for 
smaller Ra. In  addition, as Ra is increased for fixed R, fewer terms are needed in 
the representation because the ratio R/Ra is thereby decreased; for this reason, 
higher values of R may be examined as Ra is increased. 

Using the method just described, the Fourier coefficients, and thus the flow 
fields, were calculated for given values of R and Ra as a2 was varied. Of primary 
interest was the maximum value of Nusand the value of a2 at which the maximum 
occurred. Seven values of Ra were used: 0, lo3, 5 x lo3, lo4, 4 x lo4, lo5 and 
2 x lo5. The value Ra = 0 corresponds to singly diffusive convection driven by an 
unstable salinity gradient and was investigated as a check on the numerical 
method and for a comparison between singly and doubly 
For N = 2 an analytic expression for Nus can be derived: 

Nus = 1 + 2 ~ a , ,  

diffusive convection. 
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Nu'(N = 2) 

2.389 
2.424 
2.432 
2.430 
2.422 
2.400 
2.369 
2.330 
2.292 
2.253 
2-196 
2.079 

N&(N = 6) 

2.818 
2.971 
3-095 
3.157 
3.195 
3.277 
3.332 
3.388 
3.371 
3.337 
3.260 
3.023 

Nu"(N = 8) 

2.821 
2.976 
3.112 
3.174 
3.219 
3.294 
3.359 
3.41 1 
3-392 
3.345 
3.267 
3.031 

TABLE 1. Nu8 for Ra = 5000 and R = 20000 as a function of a2 and N 

so that, to this order, Nus approaches the value 3 as R-tco for a fixed value of Ra. 
This expression certainly underestimates Nus for values of R/Rc greater than 
about 2, but is accurate for R near its critical value. Also, it predicts that Nus 
reaches its maximum at a given R and Ra when a2 = in2, which is the same wave- 
number (squared) as at marginal stability. This result is not borne out when 
larger N is used for larger values of R/Rc, where it is found that larger values of a2 
are required to maximize Nus. In  table 1 the value of Nus is shown, as calculated 
from the systems of equations with N as indicated, for Ra = 5000 and R = 20000. 
In  this case, the N = 6 and N = 8 values for Nus always differ by less than 1 %, so 
the values are acceptable. The value of tc2 that maximizes Nus corresponds to a 
shorter wavelength than that a t  marginal stability. 

In  table 2 are given the values of the maximum Nus as a function of R and Ra 
and the value of a2 a t  which the maxima occur; also shown is the value of N 
necessary to achieve accurate results. It is evident from the values of Nus in this 
table that Nus is a function of neither R - R, nor R/Rc alone, but depends on some 
combination of R and Ra. The total convective flux R Nus does seem to depend on 
R - R, and is discussed below. 

Figures 1 (a)  and (b)  show the dependence of NuS on R and a2 for two cases: 
Ra = 0 and Ra = 104. These allow a clear comparison to be made between the 
singly and doubly diffusive cases. Several important results are to be seen in 
table 2 and these two figures. The wavenumber for which Nus is maximized 
increases considerably in the doubly diffusive cases (Ra =#= 0) as R increases away 
from R,, but the singly diffusive case (Ra = 0)  shows only a very slight increase of 
the maximizing wavenumber, aresult reported in many theoretical investigations. 
The doubly diffusive cases also show the tendency for the maximizing wave- 
number to be an increasing function of Ra, for constant values of RIR,. In  the 
next section we shall examine the stability of the finite amplitude roll solutions 
found here. Since the preference of the flow for a particular wavenumber lies in 
the stability of that wavenumber to  perturbations, the correspondence between 
maximum salt transport and Stability will be seen there. 

In  figure 2 the convective solute flux R(NuS- 1) is plotted as a function of 
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Ra 
0 

1000 

5 000 

10000 

40 000 

100 000 

200 000 

R 

1000 
3 000 
5 000 

10000 
15000 
20 000 
30 000 
40 000 

3 000 
5 000 

10000 
15 000 
20 000 
30 000 

10 000 
20 000 
40 000 
60 000 

15000 
20000 
30000 
40 000 
60 000 
80 000 

50 000 
60 000 
80 000 

120 000 
160 000 

150 000 
200 000 
300000 

300 000 
400 000 

Nu&,, 
1.74 
3.21 
3.88 
4.92 
5.58 
6.19 
7.13 
7.86 

2.01 
2.74 
3.74 
4.36 
4.85 
5.62 

2.04 
3.41 
5.00 
6.01 

1.62 
2.33 
3.41 
4.17 
5.32 
6.24 

1.59 
2-20 
3.42 
5-09 
6.34 

2.64 
4.32 
6.73 

3.14 
5-28 

TABLE 2 

aZ/n2 

at Nu&a,,, 

0.52 
0.57 
0-63 
0.73 
0.80 
0.86 
0.90 
0.93 

0.60 
0-71 
1-05 
1.39 
1-60 
1-85 

0.93 
2.60 
4-02 
5.11 

1.01 
2.13 
2.90 
4.28 
5.00 
5.67 

1.97 
2.63 
3.51 
5.28 
5.60 

6.04 
7.96 

10.88 

8.89 
10.20 

N 

4 
6 
6 
8 

10 
13 
14 
16 

6 
6 
8 
8 

10 
12 

6 
8 

10 
12 

6 
8 

10 
10 
12 
14 

6 
8 

10 
12 
14 

10 
12 
16 

12 
14 

(R - R,) for constant values of Ra. The convective flux in the singly diffusive 
case is closely approximated by the power law R(Nus- 1) = 0.135(R- RC)13' for 
R > 15 000, in excellent agreement with Veronis' (1966) similar treatment of this 
problem (his calculations were for Pr = 6.8, whereas the present results are for 
Pr-too). The total transport in this case, RNuS, seems to approach a power law 
RNuS N 0*29(R- Rc)1'33, but the highest value of R used (40000) and its corre- 
sponding Nusselt number (7.86) may not be large enough to allow an accurate 
power law for the total flux to be calculated. Thus the power law for the convective 
flux R(NuS - 1) is a more reliable result than that for R Nu". 

For Ra $: 0 the doubly diffusive character of the instability manifests itself. 
Owing to the small 7 limit being used, the values of Rs and T may not be specified 
separately, but only their ratio R used. On the one hand, this is a disadvantage of 
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20000 

IS 000 

I I I I 

."7P 

FIGURE 1 (a). For legend m e  p. 364. 

the limit, since the effects of varying Rs and r separately could not be treated. 
However, since this limit is valid for problems of oceanographic interest, it  
indicates that the ratio is the important quantity, and not the values of Rs and r 
individually, as shown by (1 8). Before the small r limit was recognized as useful, a 
system of equations that was valid for any r was developed. Several calculations 
were carried out with Ra, Rs and r as independent parameters. As r was decreased 
to values less than N 0.1, it was found that the two systems of equations led to 
essentially identical results for both the heat and salt flux. As an example, for 
Ru = 5 x lo3, Rs = 4 x lo3, r = 0.1 (R = 4 x lo4), a2 = +7r2 and N = 10, the more 
general system gave Nus = 4.2014 and Nut = 1.2008, whereas the small r system 
gave Nus = 4.1834 and Nut = 1.2081. These results differ by considerably less 
than the 1 yo error considered to be inherent in the computations for the Nusselt 
numbers. Therefore, the small r equations are felt to  be quite accurate for values 
of the parameters of geophysical interest. 
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0 

FIGURE 1. Nus vs. R and a2. (a) Ra = 0; the wavenumber at  which Nu" is maximized, a t  
a given value of R, is only weakly dependent on R. (6) R a  = 104; the wavenumber at 
which Nus is maximized, at a given value of R, increases rapidly with R.  

As can be seen in figure 2,  for Ra 0 different power laws were obtained for 
different values of Ra. As Ra increases, the lines appear to merge into a single 
one. However, the possibility that there is an additional weak inverse dependence 
of R(NuS- 1) on Bu cannot be ruled out as a result of the present investigation. 
Further analysis, perhaps an analytical approximation, is needed to determine 
this dependence. For Ru 2 104, the convective flux may be approximated by 
R(Nus- 1) = 0.11 (R  - Rc)1'36. This result is very similar to that obtained in the 
case Ra = 0. The slightly lower exponent is probably not of significance and is felt 
to be due to the fact that an asymptotic limit has not been approached as closely 
as in the calculations for Ra = 0. In  the Ra = 0 case, the largest value of R (4 x lo4) 
represents 60.88 times the critical value of R. For the doubly diffusive cases which 
are included in this power law, the largest value attained by RIR, is 7.51. (This 
occurs when R = 8 x lo4, Ra = lo4.) 
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1 0 4  I 0 5  

R-R, 

FIGURE 2. Convective solute flux R(NuS-l)  vs. (R-R,) for ( a )  Ra = 0, ( b )  Ra = 103, 
( c )  Ra = 5 x lo3, ( d )  Ra = lo4, 4 x 104, lo5, 2 x lo5. 

The reason for the fact that a lower value ofR/R, is attainable as Ra increases was 
pointed out earlier. It is expected that for large R/R, the power law for the total 
salt flux is given by RNuS = constant x (R  - Ra)*. 

Figures 3 (a)  and (b )  show lines of constant salinity (isohalines) for a half-cell 
for two cases of interest: R = 4 x 104, Ra = 5 x lo3, a2 = 4n2 and R = 1.5 x lo6, 
Ra = 105, a2 = 6n2. Both of these are for values of a2 very near that which maxi- 
mizes Nus at these values of R and Ra. It is evident from these figures that the 
amplitude of the motion is not a function of R - R, alone, but depends also on 
RIR,. The isohalines, which in the absence of convective motion are parallel and 
equally spaced, are much more affected by the motion in the first case than in the 
second, even though R - R, is larger in the latter. Since we are dealing with the 
small 7 limit, the isotherms are only slightly affected by the motion and remain 
almost parallel, as in the static configuration; for this reason no isotherms are 
shown here. 
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FIGURE 3. Isohalines for two doubly diffusive cases. (a) Ra = 5 x 103, R 
a* = 4n2. ( b )  Ra = lo6, R = 1.5 x lo5, a2 = 67P. The regions shown are a 
-+  < z < 8, 0 < z < r/a. Both fields are from calculations with N = 10. 

= 4 x 104, 
half-cell : 

4. Stability of the steady finite amplitude solutions 

previous section, we superpose three-dimensional disturbances 4, 
steady-state solutions. The equations governing the perturbations are 

In order to determine the stability of the steady flows determined in the 
and 19 on the 

(24) 

(25)  

(V6+RaV:)$ = -RV2Z, 
&/at = - sj $ajc - sj 4 a$ + v: (6" + vzZ. 
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Look at perturbations of the same spatial periodicity in x and z as the steady 
solutions and multiplied by a function periodic in x and y and satisfying free 
perfectly conducting boundary conditions a t  z = & +: 

2 = 2 cAYeihax sin y n ( x  + +) e i ( & + ~  ept, 

6 = ~ ~ v e i h a x ~ v ( Z ) e i ( & + b y ) e p t .  

A, v 

A, v 

Thus, from (24), we find the particular solution: 

(26) 
R[(hcc + d)2  + b2 + ( ~ n - ) ~ ] Z ~ ~ e ~ ~ m s i n  m ( z  + g)ef(h+bu) 6 = -ept 2 

A,,,  [(hcc+d)2+b2+ ( ~ n - ) ~ ] + ~ R a [ ( h a + d ) ~ + b ~ ]  

In  the same manner as that used for the steady problem, a set of equations is 
developed that may be solved for the eigenvalues p ,  using the same value of N 
that was used in the corresponding (same R, R a  and a2) steady problem. 

If we were interested in calculating all the eigenvalues p ,  this would be a 
formidable task, since the matrix involved can be as large as 72 x 72 (for N = 16). 
However, our main interest is to determine whether, given R, R a  and u2, there is an 
eigenvalue with a positive real part. We know that, near R,, there is a region of 
stable rolls, so that all eigenvalues have negative real parts in that region. The 
method, then, is to move outwards from a2 = &r2, a t  a given value of R and Ra, 
both to larger and smaller values of a2 and look for the first time an eigenvalue 
with a positive real part occurs. Thus an iterative procedure based on Sylvester’s 
theorem was used to calculate the eigenvalue with the lowest absolute value 
(see, for example, Frazer, Duncan & Collar 1952). As a test of the method, all the 
eigenvalues were calculated for N = 4 when R was near R,. The only positive 
eigenvalue was found to be real in all cases. Also, the iterative procedure used for 
larger N will not converge if the eigenvalue with the lowest absolute value is 
complex, and convergence was always attained. Thus the iterative method was 
used with confidence to determine the growth rate p ,  and unstable solutions, 
corresponding to positive p ,  were readily found. 

When R is near its critical value R, two types of disturbances must be con- 
sidered. For a > n-/ J2 disturbance rolls at right angles to the original rolls limit 
the region of stable rolls most strongly; a numerical analysis as outlined above 
will be used to treat this case. For cc < m/ J2 and R less than some value dependent 
on Ra, the steady flow becomes unstable to disturbance rolls oriented a t  a small 
angle to the original roll. Although the same numerical procedure may be used to 
treat this type of perturbation, the growth rate is proportional to  the square of 
the y component of the disturbance wave vector. For this reason it becomes 
difficult to determine the stability boundary accurately. The stability boundary 
for this particular disturbance can be obtained, however, by an analytical 
criterion similar to  that described by Lortz (1968). 

In  the small T, large I’ limit treated here, the equations for the steady rolls 
may be written as 

&,$aj V4+Ra-  q5 = -RV:#+(V6+RaV:)#, ( 
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where the operator V:/V2 is well defined because we are interested in solutions for 
4 of the form 

4 = 3 bA,eih~xsinvn-(z+~). 
A, y 

Similarly, the disturbance q3 satisfies 

= -RV2,$+(V6+RaV:)gS. (28) 

We are interested in disturbances 6 which are almost aligned with the original 
rolls. Thus, we write 

where m is small, and expand 
= f ( ~ ,  z ) e m t  ei"y, 

f=fo+m2fi+ ..., 
(T = a0+m2a1+m4~,+ ... . 

Then f satisfies 

= -R(a,,-m2)f+ [(V2-m2)3+Ra(a,,-m2)]f. 

The equation for f o  is 

(29) 
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This equation is solvable if and only if 

+ Ra a,, + a, (3 - 6) fo + (R  - ~ a )  f o  - 3vyO + 2 a,, + a,vzfo - 2 a,, + a,vzf0 
(32) 

where @is the solution to the problem that is adjoint to (30) plus the free perfectly 
conducting boundary conditions 

Ra,,$ - ( V6 + Raa,,) @ + a,, 

-ax(V4+Ra%) ($a,,+)+a, [ (V4+Ra$) (@axx$) ]  = 0. (33) 

Once again, a solution may be easily found and is $ = ax+. The solvability 
condition becomes 

In the limit Ra-tO this expression is identical to that obtained by Lortz, and 
corresponds to singly diffusive convection. 

Relation (31 )  determines crl if a solution for Q is known. The steady solutions 
found using the Fourier series representation for Q, were used to determine the 
Stability of the roll solutions to perturbations of the type treated here. This 
analysis yields the stability boundary for a < 71-142 and for R less than some value 
which is a function of Ra. Above that value of R, this stability boundary inter- 
sects a boundary for disturbances a t  larger angles of inclination to the original 
roll, and is not cf interest beyond that point. 

For a > n1.42, and for a < nl42 when R is greater than a certain value depen- 
dent on Ra, the range of stability of the steady solutions was found to be deter- 
mined by the system of equations for which N = [ h I + I’ is odd. Stability of the 
rolls to these perturbations was carried out using the iterative procedure outlined 
above. Since in all the computer runs it was found that the maximum growth rate 
of the disturbances always occurred for d = 0, further discussion of the depen- 
dence of p on d is omitted. It is useful to note that if only the lowest terms are 
included in the expansion, the roll solutions are unstable if 

(b2 + 7 1 - ~ ) ~  (a2 + n2)3 
< 

b2 a2 
24 F L M  56 
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FIGURE 4. Disturbance growth rate p vs. R and a2 for Ra = lo4. The curves represent the 
largest growth rate p a t  a given (R, aZ) point. 

that is, if a2 + &r2 there is a perturbation b to which the original roll is unstable. 
This result is contained in the investigation of thermal convection by Busse 
(1971). Higher-order terms modify this result. Figure 4 shows the relevant growth 
rates of the disturbance as a function of a2 for Ra = lo4 for several values of R. 
The growth rate of the most critical disturbance shown here (corresponding to 
the value of b which maximizes p )  varies continuously as the wavenumber a of 
the finite amplitude roll solution is varied. It is positive outside a limited band of 
wavenumbers and reaches a minimum at a wavenumber which we shall call the 
‘most stable’ wavenumber. It is clear that, as R is increased for a given value of 
Ra, the most stable wavenumber increases in much the same way as does the 
wavenumber at which Nus is maximized. Consideration of all of the results of all 
the computations carried out for doubly diffusive cases indicates that the band 
of stable rolls shows a definite tendency for shorter wavelengths to be preferred as 
R/Rc is increased and as Ra is increased a t  a given value of R/Rc. Similar results 
for the singly diffusive problem, Ra = 0, show no such tendency. 
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a21772 a2/n2 

FIGURE 5 .  Regions of stable rolls for (a) Ra = 0,  lo3, ( h )  Ru = 5 x  i03, 
( c )  R~ = 104 ,  (d) RU = 4 x 1 0 4 .  - - - , marginal stability. 

In  figures 5 (a)-(d) the regions of stable roll solutions are plotted so that this 
tendency may be more easily seen. The stability boundary for disturbances a t  a 
slight inclination to the original roll is seen here for a2 < ?p2 when R is less than 
some value that varies with Ra. For large R - R,, this type of instability is unim- 
portant, and we need not be concerned with it in determining the most stable 
wavenumber. The important observation that the region of stable rolls for singly 
diffusive convection (Ra = 0) shows no tendency for large wavenumbers to  be 
preferred is clear here. The doubly diffusive instability is thus quite different 
from BBnard convection: the wavelength of steady flow should be much smaller a t  
large values of Ra and of RIR, than that a t  marginal stability. In  fact, for large 
enough RIR, the wavenumber 01. = n/42 predicted by linear stability theory at 
marginal stability is unstable. 

One of the most important results of this investigation is shown in figure 6, in 
which smoothed curves have been drawn through the points corresponding to 
maximum Nus and maximum stability for the representative case Ra = 4 x 104. 

24-2 
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FIGURE 6. Comparison of the wavenumbers corresponding t o  maximum 
Nu* and maximum stability for Ra = 4 x lo4. 

In  the preceding discussion we have noted that the ‘most stable’ wavenumber 
behaves in a manner very similar to that of the wavenumber at  which N Z L ~  is 
maximized as R and Ru are varied. Here we make specific comparisons of these 
two wavenumbers. The correspondence, although not exact, is quite striking. It 
indicates that the stability of steady finite amplitude solutions is definitely related 
to their ability to transport salt across the layer. It also lends further support to 
the hypothesis that the flow prefers the wavelength that maximizes the rate 
of salt transport across the layer and that the maximum-transport hypothesis 
can be used as an approximate criterion for stability. Such a conclusion is 
difficult to make in a. theoretical analysis of the singly diffusive problem because 
the range of wavenumbers does not vary much from that a t  marginal stability, 
but the wavenumbers in this analysis of the doubly diffusive problem cover a 
much wider range and thus allow a better comparison to be made. 

5. Discussion 
Several important results of the foregoing analysis will be summarized here. 

Although the model problem treated in this work has been the salt finger in- 
stability, the same type of analysis is applicable to other doubly diffusive insta- 
bilities, and similar results are anticipated. In  particular, a fluid of small Prandtl 
number subjected to a destabilizing angular momentum distribution and a 
stabilizing temperature gradient, as in the work of Goldreich & Schubert, should 
show the same qualitative features as does the salt finger instability. 

The central theme of the present investigation has been an elucidation of the 
problem of wavelength selection in the doubly diffusive instability. Because of 
the drastic change of horizontal scale which the salt finger instability undergoes 
for R much greater than its critical value, this problem is ideally suited for a 
treatment of wavelength selection. It has been shown here that the small hori- 
zontal wavelength associated with salt fingers may be explained as being due to 
the instability of modes with longer wavelengths. It was shown that, in addition 
to  the observation that the preferred wavenumber di increases with increasing 
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R- R,, di also increases as Ra increases for a constant value of RIR,. For large 
values of R - B,, LZ seems to approach an asymptotic limit that is a function of Ru, 
but this limiting dependence could not be determined here. The power law for the 
salt Nusselt number obtained appears to be approaching one of the form 

RNus = c(R- Ra)8 

for larger values of R and Ra, although the present work may not have included 
large enough values of R and Ra for a definite asymptotic limit to have been 
reached. It is of interest to compare this result with Turner's (1967) experimental 
work. He found that the salt buoyancy flux obeys the power law 

here f is a slowly decreasing function of aATlpAS. Using the power law derived 
here, the buoyancy flux may be written as 

The factor (1 - rccAT/PAS)Q is a slowly decreasing function of aATIPAS. The 
value of c - 0.3 leads to a value for C about one order of magnitude smaller than 
that obtained by Turner. As was pointed out in the introduction, the problem 
treated here has boundary conditions different from those of Turner's laboratory 
experiments and does not include the effects of three-dimensional motion. 
Turner's experiments were also made with values of R and Ra considerably 
larger than those treated here, so that the motion was probably a turbulent, 
rather than a laminar, one. With these facts in mind, the comparison of these 
functional forms seems to indicate that the physical processes important in 
doubly diffusive instabilities have been included in this model. 

Perhaps the most general result of this work is concerned with the comparison 
made between the wavelength that leads to the maximum salt flux and that which 
is the most stable to perturbations. Although the conclusion that the most stable 
mode is to be preferred by the flow is not a rigorous one, the most stable mode lies 
near the centre of the wave band of stable modes and lends itself to comparison 
with other relevant wavelengths in the problem. The fact that the mode which 
maximizes the salt flux always lies within the wave band of stable modes suggests 
that the stability of a particular flow is related to its ability to transport salt 
across the layer. This is a concept put forth by Busse (1967) and, as he pointed 
out, is physically understandable because of the requirement of the stability of 
the boundary layers at the top and bottom of the fluid layer. In  contrast tc  Busse's 
findings for rigid boundaries, this analysis shows that the region of stable rolls 
does not close at  any value of R - R, for free boundaries. Free boundaries allow 
the flow to extend closer to the boundaries since the no-slip condition there need 
not be satisfied, and thus allow a larger transport of the destabilizing component 
of the fluid. Thus, for any value of R- Re, there is a non-vanishing band of 
wavelengths of the motion that lead to a value of the Nusselt number large 
enough to give stability. 
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